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ABSTRACT 
With recent advancements in the automotive world and the introductions 

of autonomous vehicles, automotive cybersecurity has become a main and 
primary issue for every automaker. In order to come up with measures to detect 
and protect against malicious attacks, intrusion detection systems (IDS) are 
commonly used. These systems identify attacks while comparing normal behavior 
with abnormalities. In this paper, we propose a novel, two-stage IDS based on 
deep-learning and rule-based systems. The objective of this IDS is to detect 
malicious attacks and ensure CAN security in real time. Deep Learning has 
already been used in CAN IDS and is already proven to be a successful algorithm 
when it comes to extensive datasets but comes with the cost of high computational 
requirements. The novelty of this paper is to use Deep Learning to achieve high 
predictability results while keeping low computational requirements by offsetting 
it with rule-based systems. In addition, we examine the performance of proposed 
IDS with the objective for using it in real-time situations. 

 
 

I. INTRODUCTION 
The transportation ecosystem is going through a 

revolutionary transformation with automation and 

connectivity as its main drivers. These services 
increase mobility and promise to virtually 
eliminate crashes and fatalities which are a 
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chronic problem to the current landscape of the 
automotive world [1]. In order to deliver these 
promising services, automotive manufacturers 
have to first eliminate malicious actors in such 
ecosystem and minimize their impact. The 
automotive cybsersecurity is a significant problem 
in today's industry. Securing vehicles includes 
securing in-vehicle networks which connect 
various Electric Control Units (ECU) for different 
subsystems in the vehicle. One of such networks is 
the Controller Area Network (CAN). CAN is one 
of the most predominant in-vehicle bus 
communication protocols. This protocol was 
designed from Bosch in 1985 with goals of 
efficiency and reliability, but security was not its 
primary objective. 

The CAN bus is essentially a two-wire broadcast 
bus with frames carrying 64-bits of data. The main 
components in a CAN Frame include: ID (11 bits), 
Control Field (6 bits), Data Field (0-8 bytes), CRC 
Field (15 bits), End of Frame and other bits (13 
bits). Newer versions such as CAN-FD extend this 
limit up to 512-bits while adding capabilities for 
security solutions at the application layer. The 
topology of a typical CAN bus system is provided 
in Figure 1. 

 

 
Figure 1: CAN Bus Topology. 

 
CAN is message oriented. Instead of containing 

addresses of the transmitter and receiver, each 
CAN frame has a predefined ID and message 
structure defined in the DBC file, a database-like 
file in a proprietary format that contains all the 
specifications of every ECU of a specific vehicle 
configuration. (The DBC file is usually kept 
strictly confidential by car manufacturers.) An 
ECU is configured at compile time to receive 

CAN messages with specific CAN IDs and 
disregard others. 

 
A. CAN Vulnerabilities 
Although CAN physical layer has strong error 

detection through CRC, bit stuffing, etc., it has no 
security protection. Most of the CAN 
vulnerabilities come from the facts that it is a 
broadcast bus, all packets broadcast to all nodes, 
and each node decides if it should process the 
packet [2]. Such a design results in many potential 
vulnerabilities for CAN communication: all nodes 
see all traffic which allows eavesdropping and 
learning patterns of target ECUs; any 
(compromised) node can send any arbitrary packet 
and no one knows who send that packet; the 
broadcast nature and relying on arbitration to win 
bus access also makes DoS attack possible; 
answers to standard challenges for authentication 
when doing sensitive things, such as reflashing 
components or firmware update, are stored in 
memory; etc. Besides the aforementioned typical 
vulnerabilities, attacks on CAN can also result in 
physical attacks. A CAN node can slightly alter its 
baud rate which will result in the node sending 
error frames constantly. This can disrupt real 
communication by causing latencies and system 
faults. 

 
B. CAN Intrusion Detection Systems 
The problem of CAN security became more 

relevant with the recent advancements in the 
automotive world and the introductions of 
autonomous and connected vehicles. Today's car 
is no longer isolated or driven primary from 
mechanical systems. Electronic controls and x-by- 
wire systems now control almost every aspect of 
the car. Adding to this includes the fact that soon a 
driver will not be required to control the car and 
the fact that every car is going to be connected and 
talk to other cars and other things (V2X). These 
developments make automotive cybersecurity 
become a primary issue for every automaker. 
Consequences that a cybersecurity breach can do 
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now for a car, are much higher than before. 
Several recent research works demonstrate an 
attacker is able to access the CAN network via a 
variety of attacking interfaces such as TPMS, 
Bluetooth, telematics, and OBD2 and take the 
whole control of victim vehicle. Securing CAN 
becomes an important security challenge. 

Message authentication and sender identification 
schemes have been proposed to protect the 
integrity and verify the originality of CAN 
messages [3]-[9], [9]-[13]. Although these 
schemes are effective to defend against attacks 
originated from unauthorized devices which have 
access to the CAN, they are limited to defense 
against attacks originated from compromised 
ECUs since these ECUs are parts of the vehicle 
and usually configured with the right credential to 
conduct secure communication. Intrusion 
detection systems (IDSs) are another major 
defense mechanism commonly used to secure 
CAN from attacks. These systems identify attacks 
while comparing normal behavior with 
abnormalities. Various IDSs exploiting different 
characteristics of CAN messages have been 
proposed. Many existing schemes exploit the 
regularity and periodicity of CAN traffic [13]- 
[16]. They usually result in efficient IDS but do 
not work well with non-periodic attack messages. 
Researchers also exploit the sequence pattern of 
CAN traffic for intrusion detection [17]. However, 
it does not work well with replay attacks and 
single message injection attacks involving 
frequent messages. In summary, these systems 
usually only work well in specific threat models 
that have been already considered in the design 
and are susceptible to miss sophisticated attacks 
that do not fall in the specific threat models. 

Giving attacks are becoming more sophisticated 
and cars become more connected and complicated, 
advanced data analytics such as deep neural 
network (DNN) are considered to improve 
detection rate, especially in detecting more 
sophisticated attacks that can escape free from 
being caught by detection methods exploiting 

regularity, periodicity, and simple sequence 
patterns [18]-[21]. However, machine learning 
based schemes usually involve high computation 
cost. 

Although all proposed IDSs are supposed to 
work in real time, no one reports an evaluation on 
processing delay time except the work of [19] 
which reports a real-time processing delay of 
2.05ms~3.78ms depending on the number of 
layers used in the DNN model. 

In this paper, we propose a novel two-stage IDS 
to strike a balance between efficiency and 
detection rate. The first stage is rule-based 
detection while the second stage is DNN-based. 
Our idea is to use the lightweight rule-based 
approach to quickly detect common attacks that 
violate the regularity and periodicity of major 
CAN traffic and use DNN to catch missed attacks 
from the first stage and achieve high detection 
rate. 

 
Contributions 
With an objective to build an IDS that can detect 

malicious attacks and ensure CAN security in real 
time, this work makes the following contributions: 

• Efficiency and detection accuracy. We 
achieve a balance between efficiency and 
detection accuracy through a 2-stage detection 
design. We choose robust and efficient rules 
in the first stage to minimize the work in the 
time-consuming second stage. We use 
advanced machine learning algorithms to 
detect sophisticated attacks to achieve high 
detection rate. 
• Realistic attack model. We consider a 
realistic attack model which cover most 
known attack types. This is in contrast with 
previous work which usually use adversary 
models with specific attacks. 
• Comprehensive evaluation with real traces 
collected from three car models. Previous 
work either use simulated data or data 
collected from one vehicle. We might be the 
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first who evaluate IDS over three different 
datasets collected from three real cars. 
• Achieve high detection rate and low 
latency. Compared with previous work, our 
experiments show the proposed IDS achieves 
high detection rate, low false positive rate, 
and low latency. 

 
Organization 
The organization of the paper is as follows. 

Section II reviews related work. Section III 
summarizes the adversary capabilities. Section IV 
will provide the methodology of our design. 
Section V will provide insights into the 
implementation and evaluation of our approach. 
And at the end we will conclude with Section VI. 

 
II. RELATED WORK 

Message authentication and intrusion detection 
are two main lines of research to secure CAN. 
Message  Authentication and   Sender 
Identification.   Several  cryptographic protocol 
proposals, most of them are based on the use of 
message authentication code (MAC), have been 
proposed for CAN message authentication [3]- 
[12]. However, due to the highly restricting space 
in CAN message (a CAN packet is at most 8 bytes 
in length)  and  the   demanding  real-time 
requirement,  to have a  practical deployable 
solution for   CAN  authentication is   still a 
challenging job. 

To improve efficiency for real-time detection, an 
anonymous ID scheme is proposed to provide 
implicit sender identification (rather than 
message authentication) to prevent broadcasting 
from unauthorized senders in [22]. Since both the 
sender and target receiver can generate the 
anonymous IDs beforehand, this scheme is 
efficient and only adds negligible delay to the 
identification process. More recently, an explicit 
sender identification scheme is proposed based 
on the fingerprinting of ECUs by using clock 
skews [13]. However, both message authentication 
and sender identification are limited to detect 

attacks originated from a compromised ECU 
which can send any arbitrary message to the 
network. 
Intrusion Detection. Parallel to message 
authentication and sender identification, various 
intrusion detection schemes (IDSs) have been 
proposed for CAN to curb cyber attacks. Some 
recent proposals exploit the fact that most CAN 
messages are sent at fixed intervals, or 
periodically [13]-[16]. The work of [14], [16] 
monitor the intervals of CAN messages and 
calculate the system entropy. Changes in system 
entropy and relative entropy are used for intrusion 
detection. The work of [15] detects message 
injection attacks by analyzing traffic anomalies 
based on message frequency with an assumption 
that all CAN messages are generated at regular 
frequency or interval. The clock-based IDS 
proposed in [13] uses the periodical nature of 
many CAN messages to detect anomalies as well 
as fingerprint ECUs. Although light weight, all 
these time-interval approaches do not work for 
attacks with aperiodic messages. 

Besides message frequency, researchers also 
exploit other information for intrusion detection. 
The work of [23] suggests the use of a set of 
different in-vehicle sensors to verify message 
formality, location, data range, data plausibility, 
etc. However, it does not have an implementation. 
The work of [17] identifies anomalies in the 
sequence of messages that flow in the CAN bus 
based on the recurring patterns within the 
sequence of message IDs. This method does not 
work very well in detecting replay attacks since a 
replay of message sequences which have already 
seen during training. Also, it only exploits 
recurring patterns of two consecutive messages 
and does not work well with single message 
injection attack. 

To detect unknown attacks and also improve 
detection rates, machine learning based IDS for in- 
vehicle networks have been proposed to exploit 
hidden patterns in IDS [18]-[21]. These schemes 
use different machine learning algorithms and data 
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features to train the model and detect anomalies. 
OBD-II port extracted data are used by [18], [20] 
to detect anomalous activities in vehicles. [18] 
uses the Hidden Markov Model while [20] uses 
artificial neural network (ANN). As OBD-II port 
extracted data are interpreted CAN data and 
usually only a limited set of message types can be 
extracted, it adds delay in data processing and has 
limited information to rely on for anomaly 
detection. The work of [19] uses bit pattern in the 
data field (64-bit) in the CAN packet and DNN for 
anomaly detection. The authors show the DNN- 
based approach outperforms traditional ANN- 
based approaches in detection accuracy. The 
authors of [21] propose a vehicular intrusion 
detection system, named as VIDS. VIDS includes 
two parts: lightweight domain-based model and 
crossdomain-based model. The lightweight 
domain-based model utilizes LSTM, a Recurrent 
Neural Network, and takes time frequency 
difference between CAN messages as input to 
learn the hidden logic. The comprehensive 
crossdomain-model uses the data field (64-bit) 
values in the CAN packet as input and ANN for 
anomaly detection. 

 
III. ADVERSARY MODEL 

We consider a general adversary model which 
can cover most known attacks targeting CAN 
communication. The attacker can send CAN 
packets to the bus directly (for example by 
plugging into the OBD-II port or compromising an 
ECU) or indirectly (for example by sending tire 
pressure info wirelessly to the RF receiver which 
is hooked directly into a car ECU which is 
connected to CAN). The attacker can be any of the 
following three attacker types with different 
capacity: 

• Weak: A weak adversary has no idea about 
the semantic meaning of CAN messages of 
the victim vehicle and has no possession of 
previous CAN traffic trace. So, a weak 
adversary can only send random CAN packets 
or specific packets such as all-zero messages. 

• Medium powerful: A medium powerful 
adversary has all the capabilities of the weak 
adversary. It can also have access to current  
or previous traffic traces. It also has 
knowledge about the specification of certain 
CAN IDs either through reverse engineering 
or learn from other sources such as the 
proprietary DBC file. It has access to a 
compromised ECU. It can send the network 
spoofed and replay messages with the ID 
configured for the compromised victim. 
However, it cannot masquerade by sending 
CAN messages on behalf of other ECUs 
rather than the compromised ECU. 
• Strong: A strong adversary has all the 
capabilities of medium-powerful adversary. It 
also can block a victim ECU from 
transmitting and send masqueraded packets 
from another ECU. 

More specifically, the attacker can mount the 
following attacks: 

• Random ID Attack: A random attack, just 
like the name depicts, is when a random ID 
CAN message is generated and injected into 
the CAN bus. 
• All Zero ID Attack: All zero attack is 
launched by messages with zero ID section. 
The ID section represents the priority of a 
CAN message, and the lower value of ID 
means the higher the priority. In zero ID 
Attack, the adversary uses the highest priority 
ID to launch attacks, usually DoS service. 
• Replay Attack: A replay attack is executed 
by messages which are transmitted in a 
normal vehicle behavior. The attacker collects 
normal CAN messages showed on bus before 
and replays them back to the bus at a later 
time. Because CAN bus lacks freshness 
protection mechanisms, this attack can be 
realized easily by adversary. 
• Spoofing Attack: Due to the lack of 
authentication in CAN bus, CAN messages 
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can be modified or spoofed on the bus. This 
attack may lead ECUs to mal-perform. 
• Drop Attack: When an attacker has the 
ability to access a compromised ECU, it is 
easy to stop transmitting selected or all 
messages from this ECU. In this case, the 
attack could lead to some serious errors for 
the vehicle. 

 
IV. OUR DESIGN 

The objective of this research is to build a novel 
in-vehicle IDS to monitor malicious  activity on 
the CAN bus and report deviations from normal or 
malicious activities in real time. To achieve the 
objective, we propose an IDS design consisting of 
two stages. The first stage is a robust rule-based 
system. The second stage uses DNN for anomaly 
detection. Figure 2 shows a high-level architecture 
for the proposed CAN-IDS. When this IDS is 
applied on the CAN bus, all the messages need to 
go through the first rule-based detection system 
for “validity check”. CAN packages which pass 
the first stage are further processed by the second 
DNN-based detection system. Finally, messages 
which pass both stages are allowed to go to the 
vehicle network. 

 

 

Figure 2: Proposed IDS Architecture. 
 
 

A. Rule-based IDS Design 
The first stage of this proposed IDS is a rule- 

based component that provides efficient detection 
prior to the second stage. Rule based systems are 
common in IDS because they can be designed 
based on characteristics of CAN traffic. There are 
many rules which can be used. The challenge here 
is to choose a set of rules that has very low false 
negative rate so that attack messages can be 
identified in the first stage without moving to the 

time-consuming second stage. Also, to achieve 
fast detection, a chosen rule must have small 
processing delay. Some typical rules used in IDS 
include: 
Valid ID: This rule is established based on the  
fact that each message contains a unique ID 
specified in the OEM's DBC file. A valid CAN 
message must contain a valid unique ID. When 
applying the valid ID rule, a message containing 
an invalid ID will be detected and marked as a 
potentially malicious message. The valid ID list 
can be generated easily from normal CAN traffic 
data. 
Time Interval: This rule is based on the fact that 
most CAN messages are generated and sent to the 
network periodically. Time interval rule is a very 
powerful rule in detecting injected messages. The 
time-interval based scheme proposed in [15] 
achieves 100% detection rate on a data set 
collected from a certain vehicle model. Time 
intervals can be calculated easily from CAN  
traffic data. 
Message frequency: This rule is established on 
the fact that most CAN packets are sent 
periodically and thus their frequency distribution 
is predictable. Figure 3 illustrates frequency 
distribution of three example ID packets from 
three different car models respectively. The  
0x0D4 packet (in blue) has five frequencies f_1= 
14, f_2= 22, f_3= 81 and f_4= 101 and f_5= 100, 
and f_5 occurs 310 times while others occur only 
about 3 times in the data set we have. The 0x916 
packet (in yellow) has only one frequency f_1= 1 
which occurs 721 times in the data set we have. 
The 0x465 packet (in green) has two frequencies 
f_1= 10, f_2= 11 and f_1 occurs 60 times while 
f_2 occurs only 2 times in the dataset we have. 
This rule is efficient to mitigate the DDoS or 
flooding attacks. The implementation of frequency 
rule is a little more complicated than the time 
interval rule. 
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Figure 3: Predictable Frequency Distribution Examples. 

 
Message sequence: The sequence rule is based on 
a characteristic that an ID always followed by 
some specific IDs. Valid ID sequences serve as  
the sequence whitelist. However, it is difficult to 
enumerate all possible sequences and it does not 
work well with replay attacks. 

Based on the discussion above, we choose the 
valid ID rule and time interval rule in our rule- 
based IDS design for efficiency and high detection 
rate. 

 
B. DNN-based IDS Design 
Artificial Neural Network (ANN) are machine 

learning algorithms which have gained a lot of 
praise in data heavy applications lately. ANN 
models a human brain and try to solve problems in 
a similar manner as the brain. They are widely 
used for intrusion detection. When an ANN has 
two or more hidden layers, it is known as deep 
neural network (DNN). Previous work has shown 
DNN outperforms other machine learning 
algorithms such as support vector machine (SVM) 
and traditional ANN in anomaly detection [19], 
[24]. Based on our experience with a DNN-based 
network IDS [25] and other previous works [26], 
[27], we chose to use sequential forward selection 
algorithms which starts by finding the best single 
individual feature. This algorithm helps to select 
features from features, including message ID, 
number of occurrences in the past second, ID 
sequence, relative distance of ID entropy, changes 
in system ID entropy, relative distance of data 

entropy, changes in system data entropy, the 
occurrences of bit-symbol "1" in the CAN 
message data filed. After a thorough analysis, the 
following features are selected: 

• Message ID: Message ID plays a crucial 
role in identifying malicious messages alone. 
For example, diagnostic packets should not be 
observed while driving. It also serves as the 
link among packets with the same ID and 
assists DNN to find hidden patterns. 
• Number of occurrences in the past 
second: We use the number of occurrences in 
the past second of an incoming message ID as 
a feature to enhance the DNN classifier. 
• Relative distance: Another important 
training feature is the relative distance 
between message ID's. It is based on the 
observation that a higher injection rate leads 
to an increase in relative distance. The usage 
of relative distance help to identify injected 
messages in CAN bus [14]. Previous research 
has also showed that malicious messages must 
be injected 20-100 times the normal rate to be 
properly received by a target ECU [28]. 
• Change in system entropy: Based on the 
observation that flooding attacks lead to a 
dramatic decrease in system entropy [14]. We 
include the change in system entropy from 
receipt of the previous message to receipt of 
the incoming message as a feature in our 
DNN. 

 
V. IMPLEMENTATION AND EVALUATION 

A. System Environment 
We implemented the proposed two stage IDS in 

a ThinkPad T440s notebook with Intel Core i5- 
4200U CPU @ 1.60GHz processor. The software 
environment is Python version 3 and TensorFlow 
is used to build the deep neural network. 

Generally, detection accuracy increases with 
more hidden layers used in the DNN model at a 
cost of increased processing time [19], [29]. After 
considering a balance between time complexity 
and accuracy, we choose to use a DNN model 
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with five hidden layers with 100, 100, 80, 60, and 
40 neurons respectively. 

We use three datasets in our evaluation and they 
are collected from three real vehicles  under 
normal situation. The first dataset collected from a 
2006 Honda Accord consists of 243,762 messages. 
The second dataset collected from an Asia brand 
vehicle has 1,152,394 messages. The third dataset 
collected from a US brand vehicle contains 
2,886,338 messages. The training data contains 
only normal CAN messages from the three 
datasets. The testing data contains normal CAN 
messages as well as malicious messages we inject. 
Five types of malicious messages are randomly 
injected into and mixed with normal traffic. 

 
B. Attack Strategy 
As defined in our adversary model, we evaluate 

the performance of the proposed IDS with five 
types of attacks: 

• Random Attack: inject random messages 
with random ID. 
• Zero ID Messages Attack: launch flooding 
attack. 
• Replay Attack: repeat previous messages. 
• Spoofing Attack: inject malicious 
messages which are generated based on the 
knowledge of CAN message specification. 
• Drop Attack: drop normal messages. 

After each normal message is read from the 
dataset, our program decides whether to inject a 
message, and what type of attack to generate. A 
random number (rand_num) in [0, 24] is selected, 
so each malicious message type has a 4% chance 
of being generated for each valid message parsed. 

It is noted that the spoofing messages are 
generated from reverse engineering. For example, 
we found instrument cluster speedometer's 
corresponding message ID is 0x0C8 in the Honda 
dataset. For ID 0x0C8, only the fifth and sixth 
bytes in data section are changed under normal 
status, shown as the red part in Figure 4. By 
changing fifth and sixth bytes, the attacker is able 
to generate malicious messages for spoofing 

attack, such as ID: 0x0C8, Data: 0x00 0x00 0x00 
0x00 0x01 0x02 0x00 0x00. 

 

Figure 4: Spoofing Malicious Message Example. 
 

C. Experiment Results 
With each dataset is split with 60 percent used 

for training and 40 percent used for testing, 
preliminary performance results are provided in 
Table 1. We achieve a detection rate of over 
99.9% with slight difference among all three 
vehicle datasets. The false positive error is about 
0.3% and the processing time for each message is 
about 0.55 ms. 

 
 Honda 

Accord 
US 

Brand 
Asia 

Brand 
Detection 

rate 
99.91% 99.97% 99.92% 

False positive 0.090% 0.029% 0.018% 
Time per msg 0.56 ms 0.53 ms 0.61 ms 

Table 1: Performance Results. 
 

The work of [21] reports a detection rate of 95% 
and the work of [19] reports a 1.6% false positive 
error and about 97.8% total accuracy. Compared 
with these two machine learning based schemes, 
our model achieves better performance in attack 
detection with low false positive error. The work 
of [13] reports a similar false positive rate of 
0.055%. 

To further evaluate the performance, we use 
different percentage of data for training. We note 
that detection rate is relatively high even with 
small amount of training data. In general, the false 
positive is a big issue when applying machine 
learning. However, our experimental results show 
that with the appropriate increasing of training 
data, we may decrease the false positive rate. 
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Figure 5: The Honda Dataset Experimental Results. 
 

 
Figure 6: The Asia Dataset Experimental Results. 

 

 
Figure 7: The US Dataset Experimental Results. 

 
Figure 5, 6 and 7 show our experimental results 

on the detection accuracy and false positive rate 
for Honda Accord (2016), the Asia brand vehicle 
and the US brand vehicle with  different 
percentage of data for training. The horizon axis 
means the percentage of datasets used for training. 
And the vertical axis represents the percentage of 
false positive and detection rate. Those results 
show: 1) Small amount of training data (about 

10% to 30%) leads to high false positive; 2) 
Acceptable false positive gained by larger amount 
of data (about 50% to 80%). And the performance 
of the third datasets should be counted as an 
exception: The performance is good starting at 
10%. Due to large amount of datasets, 10% 
messages for training is enough to train a 
classifier. Based on our experiment results and 
fact that the training process time complexity will 
increase tremendously with the increasing of the 
amount of training data, we can draw a conclusion 
that 60% to 70% is the reasonable percentage of 
data for DNN training. It is noted that the result 
may vary on different vehicle models. 

We also evaluate the time performance of our 
design. In general, more hidden layer means 
higher computation cost. Fortunately, the training 
process can be completed offline. After the 
training process, the classifier generated by the 
offline training can be applied directly for real- 
time detection. Our experiment shows about 0.6 
ms an average processing delay per message. It is 
better than the reported processing delay of 2-5 ms 
in [19]. By considering the CAN bus speed and 
CAN packet size, the proposed IDS model can be 
used in real-time environment. 

 
VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we propose a two-stage intrusion 
detection system for in-vehicle CAN bus. In the 
first stage, we use a rule-based component to 
check injected CAN messages while in the second 
stage we use a DNN based component. 
Experimental results show that this two-stage 
CAN IDS has a good performance with high 
detection rate, low false positives, and small 
processing delay. There is potential for real-time 
implementation. We also prove that this system 
can work for different vehicle models with 
necessary training. Another contribution of this 
paper is that it provides a feasible architecture that 
leverages emerging and performance-proven 
algorithms such as deep neural network to be 
applied into CAN Intrusion Detection Systems. 
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The experimental results provide the performance 
comparison between three different vehicle 
brands. The results affirm that the proposed IDS 
could work for different models of vehicles. 

Future works include continuing to determine the 
implementation feasibility of this algorithm in real 
time (with ECU spec), applying pre-process to 
improve performance, reducing DNN hidden layer 
without impacting the performance and reducing 
the false positives, and adding more robust rules to 
improve the first component. Another direction for 
future work is to develop more complex attack 
strategies such as event-based attacks and evaluate 
the effectiveness of the proposed IDS against 
them. 
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